Влияние различных эдафических факторов на жизнь растений и почвенной биоты. Почвенная биота – биологический мир почвы Почвенная биота и ее активность

Почвенная биота - биологический мир почвы

Что такое почвенная биота? Кто самый важный?

Если спросить садовода, какие из живых существ почвы наиболее полезны для растений? Что делает почву плодородной? Кто из живых существ максимально увеличивает плодородие? Большинство ответят, конечно, дождевые черви. Так ли это? Кто ещё работает на наш урожай?

Я в предыдущих статьях, с разных сторон осветил роль невидимых нашему взгляду микроорганизмов. Не просто сапрофитов, разлагающих органику и минералы почвы, а именно азотофиксаторов, которые живут в ризосфере, и которых растение привлекает своими подкормками и которые дают ей дефицитный азот из воздуха. А также грибов - симбионтов, которые делают доступным для растений дефицитный фосфор.

Покинем ризосферу. Поговорим обо всём другом. Представим, что на почву упала листва, или прошла корова на лугу и оставила «лепёшку». Трансформация органического материала в почве осуществляется последовательно сменяющими друг друга живыми организмами. Вначале, буквально за считанные дни сахарная микрофлора потребит сахара, затем с небольшим отставанием аминокислотная микрофлора усвоит энергию белка. Затем им на смену придут сотни видов живых существ разрушающих целлюлозу, этот процесс достигает пика за месяц, и стихает к концу года. А микроорганизмы, разрушающие лигнин, будут работать несколько лет. И, в конце концов, в почве произойдет накопление гумуса, улучшится структура и плодородие почвы, если садовод не будет этому сильно мешать.

Итак, численность бактерий в почве достигает колоссальных размеров (от 1 до 10 млрд. клеток в 1 г почвы, а в зоне корня, в ризосфере ещё в 100 раз больше). Она никогда не остается постоянной в течение вегетационного периода, так как зависит от поступления органического вещества, от свойств почвы, её влажности и температуры. Поэтому даже в течение одного месяца в почве может быть зарегистрировано от 6 до 10 пиков максимума численности, за которыми следует 3-кратное уменьшение. Основная масса бактерий, сосредотачивается в верхних богатых органикой слоях. Общая биомасса бактерий в почве составляет примерно от 1 до 5-7 т/га. Бактерии гибнут, нарождаются, сменяются виды, и все это сотни раз за сезон, и это «лучшая пища» для наших растений.

Второе место по значимости надо отдать грибам. Именно они первыми начинают разрушать недоступную для растений грубую органику, высокомолекулярные углеводы. В 1 г почвы разных типов обнаруживается от 10 до 300 тыс. грибов. Предпочитаемое ими место обитания ограничено поверхностным слоем почвы. Суммарная длина грибного мицелия в почвах холодного и умеренного климата измеряется от нескольких сотен до тысяч метров на 1 г почвы. Максимальная биомасса грибов (мицелии + споры) отмечена в дерново-подзолистых почвах и составляет более 200 г/м2. В некоторых почвах биомасса грибов оценивается в 100-1000 кг/га. Это примерно в 5 раз меньше чем бактерий, но намного больше, например, биомассы дождевых червей.

Мало кто знает, что после грибов, по влиянию на плодородие почв, ненамного отстают водоросли. Если бактерии и грибы разрушают органику, то водоросли, как и высшие растения, являются продуцентами органического вещества. В настоящее время известно около 2000 видов водорослей, встречающихся в разных типах почв. Наибольшее количество водорослей сосредоточено в верхнем горизонте почвы, ограниченном глубиной проникновения солнечного света. Обычно в 1 г почвы содержится от 5 тыс. до 1,5 млн. клеток. Но в благоприятных условиях численность водорослей на 1 см2 поверхности почвы может достигать 40 млн., а биомасса 1,5 и даже 2 т/га. Во время массового размножения колонии водорослей становятся хорошо заметными, так как придают почве зелёный оттенок или образуют на ней зелёную корочку в несколько миллиметров толщиной. Растения активно привлекают водоросли и в свою ризосферу, так как они и азот из воздуха аккумулируют и почву подщелачивают, понижая кислотность. А главное, склеивают частицы почвы своей слизью и нитями, быстро улучшая её структуру.

Кратко, о животных почвы. Самые маленькие и многочисленные - это микроскопические одноклеточные: жгутиконосцы, корненожки, амёбы и инфузории. Все они обитают в почвенных порах и капиллярах, заполненных водой, но в отличие от организмов, живущих в водоёмах, почвенные животные способны длительное время сохранять жизнеспособность при недостатке воды и низких температурах. В почвах России обнаружено около 600 видов простейших. В пахотных угодьях Московской области найдено 38 видов жгутиконосцев, 27 видов голых амеб, 54 вида раковинных амеб и 26 видов инфузорий. В одном грамме почвы может быть до 15 тыс. раковинных корненожек и до 200 тыс. жгутиконосцев, живая масса жгутиконосцев составила 50, а инфузорий - более 200 кг/га. Общая же биомасса простейших достигает 300-400 кг/га.

К микрофауне относят и мелкие многоклеточные (коловратки, тихоходки, нематоды, клещи и ногохвостки). Эти организмы обитают в плёнках воды или в почвенных порах, заполненных влажным воздухом. Наиболее многочисленными и превосходящими остальных по биомассе являются нематоды. В почве их насчитывается от 1 до 2,5 млн. особей на 1 м2. Суммарная биомасса ногохвосток и клещей невелика и составляет 10-20 кг/га. Нематод в пять - десять раз больше.

Самыми многочисленными организмами в почве являются энхитреиды. Это мелкие кольчатые черви длиной 5-30 мм. Их численность на 1 м2 составляет от 2 до 10, а в луговых почвах - до 120 тыс. особей. Биомасса энхитреидов в благоприятных для размножения условиях может достигать 500 кг/га. Энхитреиды ведут подвижный образ жизни. Они передвигаются по проделываемым ходам или по естественным почвенным порам, что позволяет им проникать на относительно большую глубину. Питаются энхитреиды отмершими частями растений, но встречаются среди них и хищные виды, поедающие картофельных нематод.

Многоножки являются представителями класса членистоногих. Их размеры колеблются от 1,5 до 2 мм у мелких видов и от 10 до 15 см у самых крупных. Общая численность многоножек в слое луговой почвы 15-20 см - 4873 экз./м2. В южных тёплых почвах преобладают не многоножки, а мокрицы. По характеру питания многоножки и мокрицы сапрофаги и хищники. И все они выделяют в почву свои экскременты, по качеству не хуже, чем дождевые черви и делают такие же ходы, чем улучшают проницаемость почвы для воздуха и воды на глубину до 1 метра.

Макрофауна. В эту группу почвенных животных включаются земляные черви, насекомоядные, грызуны и землерои. Наиболее изученными организмами, с точки зрения их роли в почвообразовании, являются земляные черви. В почвах нашей страны встречается около 100 видов дождевых червей, но широкое распространение имеют только 16 видов. Продолжительность жизни дождевых червей в естественных условиях составляет 2-3 года. Основное место сосредоточения - гумусовый слой почвы. Очень часто они углубляются и в нижние горизонты. Считается, что в культурных почвах численность дождевых червей должна быть не менее 1,0 млн. особей, а масса 0,5-0,6 т/га. Всем понятно, что число их зависит от вносимой органики, от нагрузки пестицидами и минеральными удобрениями и от минимума обработки почвы.

Основным источником питания для дождевых червей служат растительные остатки и заглатываемая почва, содержащая органические вещества и различного рода микроорганизмы. За 24 часа дождевыми червями перерабатывается такое количество почвы, которое сравнимо с массой их тела. Остатки пищи и заглатываемый грунт после прохождения через кишечник выбрасываются на поверхность почвы или в подземных ходах в виде копролитов - округлых комочков почвы диаметром 1-5 мм. На полях и лугах дождевыми червями ежегодно откладывается от 20 до 80 т/га копролитов. Полагают, что весь гумусовый горизонт почвы, где обитают дождевые черви, полностью перемешивается за 100 лет. Эффект перемешивания почвы особое значение имеет при минимальных поверхностных обработках почвы. Мы способствуем более быстрому накоплению органического вещества в верхних горизонтах, а дождевые черви перемещают его в нижние, что, естественно, положительно влияет на рост растений. Хотя большее значение имеет аэрация почвы ходами червей и то, что они переносят эффективные микроорганизмы в новые слои почвы.

Я перечислил основных представителей флоры и фауны почвы и их количественную роль в накоплении плодородия почвы. Но ведь важнее понять другое. Живые организмы, населяющие почву, существуют не сами по себе, а входят в состав биологических ассоциаций, точнее экосистем. Почвенные экосистемы по своим законам и функционированию почти не отличаются от обычных наземных и водных, привычных для нас. В них имеются все основные структурные компоненты, связанные между собой прямыми и обратными вещественными и энергетическими связями.

Приведу маленький пример из жизни невидимого нам микромира. Так, водоросли положительно влияют на жизнедеятельность бактерий и простейших. Обогащение цианобактериями почвы способствует росту численности и биомассы простейших в 1,5-2 раза, а таких их видов, как инфузории, в 4-8 раз. Водоросли стимулируют рост и большинства грибов. Грибы, в свою очередь, усиливают азотфиксирующую активность бактерий и водорослей находясь в тесном симбиозе с ними.

Жизнедеятельность простейших в большой степени зависит от присутствия микроорганизмов, которые являются для них основным источником питания.

А теперь представьте. Мы внесли гербициды, чтобы уничтожить всего лишь сорняки и незаметно для наших глаз уничтожили почвенные водоросли. И вся цепочка важнейших связей обрушилась от начала до конца. Резко уменьшились в численности по цепочке бактерии, простейшие, грибы, и дождевые черви и все другие помощники для наших растений. И эту нишу заняли вредители и болезни.

Ещё пример. Отдельные виды микроорганизмов, и в частности водоросли, поедаемые почвенными животными, не перевариваются в их организме и выбрасываются с экскрементами. Находясь в этой среде, они используют легко доступные питательные вещества, содержащиеся в ней, и поэтому очень быстро развиваются. Так происходит селекция и размножение отселектированных особей.

Закончу цитатой из одной умной книги:

«… Выделительная функция у корней зависит от многих факторов окружающей среды. Но самое примечательное то, что её могут стимулировать микроорганизмы ризосферы. Это наталкивает на мысль о существовании очень тесной связи между растениями и микроорганизмами, выходящей за рамки простого взаимодействия. Их можно рассматривать как единую систему, состоящую из двух блоков, между которыми имеется постоянно действующая двусторонняя связь, позволяющая каждому из них в той или иной мере регулировать функции другого. Иначе говоря, выделительную функцию корневой системы растений и клеток микроорганизмов, посредством которой осуществляется обмен информацией, следует рассматривать как одно из эволюционных приобретений, позволяющее им в меньшей степени зависеть от условий окружающей среды…»

(Иванов В. П. Растительные выделения и их значение в жизни фитоценозов)

Почвенная биота — комплекс разнообразных почвенных организмов, различающихся по экологическим функциям и таксономическому положению (различные группы микроорганизмов и почвенная зоофауна).

Она принимает участие в процессах формирования почвенного плодородия: в минерализации органического вещества, вовлечении химических элементов минералов литосферы в круговорот, биологической фиксации азота.

Почвенные организмы разрушают отмершие остатки растений и животных, поступающие в почву. Одна часть органического вещества минерализуется полностью, а другая — переходит в форму гумусовых веществ и живых тел почвенных организмов.

В обрабатываемой почве функции почвенных организмов сводятся к поддержанию оптимального питательного режима, что выражается в частичном закреплении минеральных удобрений с последующим освобождением по мере роста и развития растений, оструктуривании почвы, устранении неблагоприятных экологических условий в почве.

Поддержание экологически благоприятных условий в почве осуществляется благодаря наличию тесных связей между почвенными организмами, которые находятся в состоянии непрерывно изменяющегося равновесия. Одни группы микроорганизмов предъявляют простые требования к пище, другие - сложные. Между одними группами существуют симбиотические (взаимно полезные) связи, между другими - антибиотические. В последнем случае микроорганизмы выделяют в почву вещества, подавляющие развитие других микроорганизмов. Это имеет непосредственное значение в очищении почвы от фитопатогенной микрофлоры.

Для оценки деятельности почвенной биоты используют биологическую активность почвы. С одной стороны, этот показатель характеризуется численностью компонентов почвенной биоты, с другой - количественными критериями результатов жизнедеятельности почвенных организмов.

Определение численности почвенной биоты осуществляют, как правило, подсчетом общего количества почвенных организмов. Из-за несовершенства методик и малой кратности определений во времени результаты анализа дают примерную характеристику биологической активности почвы. Наряду с общим подсчетом почвенных организмов иногда определяют количество микроорганизмов разных физиологических групп (нитрифицирующие, целлюлозоразлагающие и др.).

Оценку биологической активности почвы по результатам деятельности почвенных организмов проводят методом определения количества поглощенного кислорода и продуцируемого диоксида углерода, разложении целлюлозы, активностью почвенных ферментов, количества нитратного и аммиачного азота, а также фитотоксичных соединений. Высокая биологическая активность почвы способствует росту урожайности сельскохозяйственных культур при прочих равных условиях. Для нормального функционирования почвенных организмов необходимы, прежде всего, энергия и питательные вещества. Для подавляющего большинства микроорганизмов такой источник энергии — органическое вещество почвы. Источниками поступления органического вещества в почву являются навоз, торф, солома, зеленое удобрение, сапропель, посев многолетних трав, промежуточных культур. Зеленая масса пожнивного сидерата повышает биологическую активность почвы в 1,3-1,5 раза, а в отдельные годы и в два раза. При этом изменяется видовой состав почвенной микрофлоры — повышается содержание бактерий рода Clostridium и азотофиксирующая способность почвы возрастает в 6-10 раз. Одновременно зеленое удобрение активизирует ферментативную активность почвы: активность уреазы повышалась на 52%, протеазы — на 45%, инвертазы — на 10%, каталазы — на 17% (Лошаков В. Г., 1986).

Ускоряя разложение растительных остатков — носителей почвенных фитопатогенов, зеленое удобрение в несколько раз повышает биологическую активность сапрофитной микрофлоры, которая является антагонистом почвенных грибов — возбудителей многих болезней культурных растений. Установлено, что пожнивная сидерация снижает поражение картофеля паршой обыкновенной в 2-2,4 раза, ризоктониозом — в 1,7-5,3 раза, ячменя корневыми гнилями — в 1,5-2 раза. Установлена отрицательная средне выраженная связь между степенью развития болезни корневой гнили и урожайностью зерна, которая выражается коэффициентами корреляции r = — 0,61+ 0,22 и регрессии byx = -0,70+0,26.

Наглядным показателем активизации почвенной биоты при использовании пожнивной сидерации служат результаты учета количества дождевых червей. Установлено, что длительное использование пожнивной сидерации в зерновых севооборотах на фоне минеральных удобрений способствует увеличению количества дождевых червей в пахотном слое дерново-подзолистой почвы в 1,5-2 раза.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Трансгенные растения и почвенная биота

А.Г. Викторов, кандидат биологических наук, Институт проблем экологии и эволюции им. А.Н. Северцова РАН

Первые устойчивые к вредителям растения, созданные с помощью методов генной инженерии, были введены в культуру в 90-х годах прошлого столетия. Эти генетически модифицированные растения (Bt-культуры) несут гены грамположительной аэробной спорообразующей бактерии Bacillus thuringiensis, которая синтезирует параспоральные (локализованные рядом со спорой) кристаллические образования, содержащие d-эндотоксины - Cry-белки, убивающие личинок насекомых разных отрядов. Замечу, препараты из смеси клеток, спор и параспоральных кристаллов применяются уже более полувека (первый промышленный инсектицид "Спореин" был создан во Франции в 1938 г.). С тех пор они считаются одними из наиболее экологически безопасных средств защиты растений, так как этот класс пестицидов токсичен для теплокровных животных лишь в концентрациях, в несколько тысяч раз превышающих дозы, используемые при однократной обработке полей.

В настоящее время в сельском хозяйстве используется уже около тридцати Bt-культур. Самые популярные из них - кукуруза, хлопок, картофель, гибрид рапса "канола" (от англ. canada oil low acid - канадское слабокислое масло), рис, брокколи, арахис, баклажан, табак. Большинство сортов трансгенной кукурузы несут ген белка Cry1Ab, защищающий от опасного вредителя - личинок кукурузного, или стеблевого, мотылька (Ostrinia nubilalis).

В 2001 г. генетически модифицированные растения занимали уже более 12 млн га в мире, причем около половины из них приходилось на долю трансгенной кукурузы. 99% всех Bt-культур выращивают в четырех странах: США, Аргентине, Канаде и Чили . В США площадь полей Bt-кукурузы в 2000 г. составляла более 8 млн га (около четверти плантаций), а Bt-хлопка - 2.4 млн га (около половины посевов). Экономическая польза таких растений очевидна: по оценке Агентства по защите окружающей среды США (U.S. Enviromental Protection Agency), использование в этой стране только Bt-зерновых культур приводит к ежегодному сокращению применения синтетических инсектицидов на площади примерно 3 млн га и позволяет сэкономить 2.7 млрд долл. США .

О возможном негативном влиянии трансгенных сельскохозяйственных культур на окружающую среду до недавнего времени лишь робко предупреждали экологи. Сторонники же генетической модификации растений, напротив, убеждали в их полной экологической безопасности, опираясь на результаты лабораторных тестов и опыт выращивания этих культур в естественных условиях. (Как впоследствии оказалось, применявшиеся в некоторых лабораторных экспериментах методики и объекты тестирования были не адекватны поставленным задачам, но об этом чуть позже.) Лишь сейчас, спустя десятилетие после начала промышленного выращивания трансгенных культур, становится более или менее очевидно, какого рода ущерб они могут наносить окружающей среде.

Появляется все больше свидетельств того, что использование Bt-растений может иметь долгосрочный негативный эффект, экономический ущерб которого пока даже трудно оценить. Во-первых, Bt-кукуруза производит в 1.5-2 тыс. раз больше эндотоксина, нежели вносится при однократной обработке полей химикатами, содержащими Bt-токсин. Во-вторых, культивирование Bt-кукурузы приводит к накоплению Bt-токсинов в почве в результате действия многих факторов: выделений корней, отложения пыльцы, разложения растительных остатков. В-третьих, разложение трансгенных растений происходит значительно медленнее, нежели обычных культур, а биологическая активность почв, занятых генетически модифицированными растениями, заметно ниже, чем на контрольных участках.

Bt-токсины в почве

После сбора урожая трансгенной кукурузы около десяти процентов Bt-токсинов остается на полях в растительных остатках. И только с их разложением происходит и деградация Cry-белков в естественных условиях. По данным швейцарских исследователей, концентрация токсина Cry1Ab в растительных остатках резко сокращается (до 20-38% от количества в живых растениях) через два месяца после уборки урожая и остается примерно на том же уровне в течение зимы . Лишь с наступлением весны начинается дальнейшая деградация Bt-токсина, однако и по истечении 200 дней 0.3% от исходного его количества остается на полях. Максимальный же срок, в течение которого сохраняются Cry-белки, оказавшиеся в почве в результате выделений корней и разложения растительных остатков, достигает 350 дней . Bt-токсины остаются биологически активными в течение столь длительного времени (фактически до года) благодаря тому, что находятся в связанном состоянии с поверхностно активными почвенными частицами (глины, гумуса и т.д.); это-то и защищает их от разложения микроорганизмами.

Эти результаты получены сравнительно недавно и принципиально отличаются от более ранних, проведенных в лабораторных условиях, когда было установлено, что 50% Bt-токсинов разлагаются через полтора дня после попадания в почву и 90% - в течение 15 дней. В случае если растительные остатки не контактировали с почвой, то 50%-й распад Cry-белков наблюдался в течение 25.6 дней, а 90% - 40.7 дней . Столь сильные различия в скорости разложения Bt-токсинов, очевидно, связаны с тем, что в лабораторных условиях эксперименты проводились при постоянной комнатной температуре, в то время как в природе кроме холодного зимнего периода, характерного для средней полосы, где и произрастает в основном трансгенная кукуруза, наблюдаются и суточные колебания температур. Кроме того, в лабораторных экспериментах листья кукурузы перемалывались, просеивались и лиофилизировались, что обеспечивало существенно большую площадь для колонизации микроорганизмами. Естественно, ничего подобного в природе не происходит, и понятно, что экстраполировать результаты лабораторных опытов с Bt-токсинами на естественные условия необходимо крайне осторожно.

Хотя поступление в почву Cry-белков с выделениями корней трансгенных растений не столь велико, как после разложения растительных остатков, оставшихся на полях после сбора урожая, но и этот фактор нельзя сбрасывать со счетов. Интересно отметить, что если корневые отростки канолы, табака и хлопка вообще не выделяют Bt-токсинов , то все 12 исследованных трансгенных сортов кукурузы, полученных с помощью трех независимых генно-инженерных операций (Bt11, MON810 и Bt176), продуцируют Cry-белки практически в одинаковых количествах . Кроме того, инсектицидная активность выделений кукурузы была самой большой - достоверно более высокой, нежели у риса и картофеля. Хотя некоторое количество Cry-белков может попасть в почву и в результате шелушения или механического повреждения корней, но именно с их выделениями поступает в почву основная часть Bt-токсинов. В подтверждение тому достаточно сказать, что у кукурузы, риса и картофеля, выращиваемых на гидропонике, никаких нарушений корневой поверхности не отмечалось, тем не менее Cry-белки в питательном растворе все же регистрировались.

Лигнин

Замечено, что растения с высоким содержанием Bt-токсинов не привлекательны даже для тех фитофагов, для которых эти токсины не ядовиты. Так, в экспериментах с погребной, или шероховатой, мокрицей (Porcellio scaber), которой предлагались в пищу восемь сортов кукурузы (две трансгенных и шесть изогенных им контрольных линий), выяснилось, что это животное явно предпочитает нетрансгенные растения . Кроме того известно, что растительные остатки трансгенных растений разлагаются значительно медленнее по сравнению с генетически немодифицированными изогенными линиями. Причины тому в настоящее время изучаются. Предполагается, что связано это с повышенным содержанием лигнина в трансгенных растениях. Возможно, этим же объясняется и их пищевая непривлекательность, однако, к сожалению, авторы не исследовали связь между этими сортами кукурузы и содержанием в них лигнина.

Лигнин - высокомолекулярное соединение ароматической природы - основной структурный компонент растений, заполняющий пространство между клетками и "склеивающий" их первичные оболочки. Именно лигнин обеспечивает прочность и жесткость растительных конструкций, а также их водонепроницаемость. С одной стороны, повышенное содержание лигнина затрудняет "работу" фитофагов, с другой стороны, замедляет процессы разложения растительных остатков в почве. При разложении лигнина в среду выделяются токсичные низкомолекулярные продукты распада (фенолы, метанол, карбоновые кислоты).

Содержание лигнина в стеблях Bt-сортов кукурузы на 33-97% выше, чем в изогенных им нетрансгенных линиях . Большой разброс данных связан с различным содержанием лигнина в трех основных линиях трансгенной кукурузы. Избыток лигнина проявлялся и на морфологическом уровне. Сосудистые пучки и окружающие их клетки склеренхимы, в состав которых входит лигнин, были у Bt-растений почти в два раза толще, нежели у изогенных нетрансгенных линий (21.5±0.84 мм и 12.4±1.14 мм соответственно). Повышенное накопление лигнина характерно лишь для стеблей Bt-кукурузы, в листьях же его количество примерно то же, что и у обычных растений .

Кроме того, выяснилось еще одно любопытное обстоятельство: лигнина оказалось больше в кукурузе, выращенной в естественных условиях, чем в лабораторных. Это лишний раз подтверждает, что в искусственной среде трансгенное растение развивается иначе, чем в природе.

В результате дальнейших исследований выяснилось, что избыток лигнина характерен не только для Bt-кукурузы, это общее свойство всех трансгенных растений. В различных генетически модифицированных культурах (рисе, табаке, хлопке и картофеле) лигнина на 10-66% больше, чем в соответствующих им генетически не модифицированных изогенных линиях .

Дождевые черви

Одни из главных утилизаторов растительного опада в средней полосе - дождевые черви, в основном из семейства люмбрицид (Lumbricidae). Встречаются они практически во всех естественных и антропогенных экосистемах умеренного пояса и доминируют в них по биомассе (особенно высока их численность в лесостепи, смешанных и широколиственных лесах - более 300 особей на 1 м2). Пронизывая почву ходами, дождевые черви рыхлят ее, способствуя аэрации и увлажнению на глубине, перемешивают почвенные слои, ускоряя разложение растительных остатков и повышая тем самым плодородие почвы. Объем переносимой этими животными почвы колеблется от 2 до 250 т/га в год. Вертикальное распределение дождевых червей вдоль почвенного профиля определяется, с одной стороны, их экологией, а с другой - комплексом абиотических факторов, таких как температура, влажность почвы, вертикальный градиент распределения органических веществ.

Токсины могут действовать на дождевых червей по-разному, в зависимости от вида люмбрицид и стадии их развития. Ювенильные особи, не способные уходить глубоко в почву, страдают от поллютантов сильнее, чем половозрелые. Но и один из самых крупных видов люмбрицид средней полосы - большой выползок (Lumbricus terrestris) - как ни странно, также находится в "группе риска". Дело в том, что особи этого вида, днем скрываясь в глубоких (до 3 м) норах, ночью выходят на поверхность почвы за пропитанием - растительным опадом (в России за такой образ жизни этот космополит получил народное название "большого выползка"). Справедливости ради отметим, что небольшую часть их диеты составляют и корни растений. Во время таких ночных путешествий некоторые особи могут преодолевать до 19 м. Примерно каждая третья трасса оканчивается норой, а у каждой четырнадцатой - норы есть и в начале пути. В разных экосистемах за несколько осенних месяцев эти дождевые черви способны унести в норы практически весь растительный опад. Это вовсе не означает, что люмбрициды сразу же все съедают, существенную часть пищи они запасают в норах и потребляют по мере частичного разложения растительных остатков. Именно эти особенности экологии большого выползка и определяют высокий уровень его контакта как с поллютантами, оседающими на полях, так и с трансгенными растениями.

Люмбрициды развиваются в толще почвы и, естественно, реагируют на изменения ее химического состава, в частности попадание загрязняющих веществ, которые способны проникать в их организм через покровы. Учитывая особенности питания, дождевые черви могут заглатывать с частицами почвы и содержащиеся в них токсины, а значит, могут подвергаться их воздействию как снаружи, так и изнутри.

Как ни странно, обстоятельных исследований токсичности Cry-белков для дождевых червей до сих пор не проводилось. Правда, около полувека назад при проверке токсичности для люмбрицид препарата Thuricide, содержащего B.thuringiensis var. kurstaki, установлено, что только очень высокие его концентрации (в 10 тыс. раз превышающие рекомендованные для обработки полей) в течение двух месяцев вызвали 100%-ю смертность лабораторных популяций L.terrestris . Казалось бы, эти данные имеют только косвенное отношение, но ведь оказавшиеся смертельными дозы лишь в пять-десять раз превышали концентрацию Bt-токсинов в живых трансгенных растениях. Гистологические исследования погибших люмбрицид показали, что бактерии проникли практически во все ткани червей, где произошла их споруляция и формирование кристаллов. Позднее столь необычная патология была объяснена тем, что в опытах использовалась диатомовая земля, которая, повреждая эпителий кишечника, способствовала проникновению бактерий в цело́м (пространство между стенкой тела и внутренними органами) дождевых червей.

В другой серии экспериментов изучалось действие пестицидов, содержащих Bt-токсин, на дождевого червя Dendrobaena octaedra: десятинедельное воздействие токсина в дозах, в тысячу раз превышавших полевые и примерно равные концентрации токсинов в живых растениях, приводило к существенному угнетению роста и размножения, а также более высокой смертности червей . К сожалению, в этих опытах использовался вид, который не имеет никакого отношения к полям (обычно он обитает в лесной подстилке) и в естественных условиях не может сталкиваться с трансгенными культурами.

Одним из первых экотоксикологических опытов по изучению влияния трансгенных растений на дождевых червей стал стандартный лабораторный тест с использованием искусственной почвы и навозного червя (Eisenia fetida). Оказалось, что экстракты листьев трансгенной кукурузы, содержащих Bt-токсин, никак не влияют на выживание и развитие этих люмбрицид - все они дожили до конца 14-дневного эксперимента и по массе тела не отличались от контрольных животных. По расчетам авторов, использованная в опыте концентрация Bt-токсина (0.35 мг CryIA(b)-белков на 1 кг почвы) была примерно в 785 раз выше той, которая могла бы сложиться в почве после уборки урожая . Эти результаты имели бы смысл, если бы выбор вида дождевого червя был адекватен поставленным целям. Авторы не учли, что E.fetida, как и D.octaedra, в естественных условиях не сталкивается с трансгенными культурами. Не говоря уж о том, что навозный червь в отличие от собственно почвенных видов не заглатывает почвенных частиц, а питается разлагающейся органикой, поэтому неясно, какое количество Bt-токсинов попало в его пищеварительную систему и попало ли вообще.

40-дневные наблюдения за лабораторными популяциями L.terrestris, живших в почве, в которой проращивались семена трансгенной кукурузы или добавлялись ее листья, не выявили значимых изменений ни в массе тела, ни в смертности больших выползков, хотя Bt-токсины и были обнаружены в их кишечниках и кастах (экскрементах). Когда черви переносились в чистую почву, в течение одного-двух дней их кишечники освобождались от токсина . К сожалению, авторы этой работы не оценивали влияние Bt-токсинов на размножение люмбрицид, а также на ювенильные, более чувствительные к токсинам, особи. Кроме этого, для такого крупного и живущего не один год дождевого червя-норника, как большой выползок, 40-дневный срок явно недостаточен для выявления сублетальных эффектов. В другом, проведенном несколько позднее, аналогичном эксперименте, но длившемся уже 200 дней, выяснилось, что масса тела L.terrestris, питавшихся трансгенными растительными остатками, снижалась в среднем на 18%, в то время как у контрольной группы она на 4% повышалась .

К сожалению, пока еще не исследовалась миграция Bt-токсинов в трофических цепях, в которых дождевые черви служат кормовой базой для многих хищных беспозвоночных, птиц и млекопитающих. К примеру, в Англии в рационе рыжих лис (Vulpes vulpes) большой выползок составляет в среднем 10-15%, а на участках, где этих дождевых червей особенно много, - до 60%. Не брезгует большими выползками и обыкновенная неясыть (Strix aluco), которая за час может поймать более 20 червей. Отмечена и особая любовь к L.terrestris и у европейского барсука (Meles meles); более 20 лет назад их даже сочли специализированными хищниками дождевых червей. Впоследствии гипотеза была отвергнута, но справедливости ради отметим, что в некотором роде специализация у этого хищника все же есть, - проявляется она в технике захвата пищи.

Для почвенных микроорганизмов (как чистых, так и смешанных культур) токсичность Cry-белков не выявлена; количество бактерий и грибов в почвах, содержащих биомассу генетически модифицированной и нетрансгенной кукурузы, статистически не различалось. Однако в экспериментах с почвенными микрокосмами, в которых отсутствовали почвенные беспозвоночные, показано, что и в этом случае биодеградация Bt-культур (кукурузы, риса, табака, хлопка и томатов) происходит значительно медленнее по сравнению с контролем. Об этом свидетельствовало значительно меньшее количество углерода, уходящего из экспериментальных почвенных микрокосмов в виде CO2, по сравнению с контролем .

Пониженная скорость разложения трансгенных растительных остатков требует дальнейшего и всестороннего исследования, поскольку потенциальный ущерб от этого имманентного свойства Bt-культур может иметь отдаленные экологические последствия. Еще более пристального внимания требуют особенности миграции Cry-белков по пищевым цепям. И, наконец, появляется все больше данных о том, что популяции вредителей сельского хозяйства начинают вырабатывать устойчивость к Bt-токсинам и начинают питаться трансгенными растениями.

Обнаружение Bt-токсинов в корневых выделениях кукурузы, риса и хлопка и их длительное сохранение в почве говорит и о том, что особые меры предосторожности должны быть приняты перед тем, как растения и животные, генетически модифицированные с целью производства лекарственных (антибиотиков, вакцин, гормонов, ферментов) и прочих биологически активных веществ, будут покидать стены лабораторий и оказываться в менее контролируемых условиях промышленного производства. В отличие от Bt-растений, мишени этих соединений - не насекомые, а млекопитающие, в том числе и люди. Практически все эти вещества - ксенобиотики, но их способность сохраняться в окружающей среде исследована недостаточно. Ясно поэтому, что потенциальный ущерб выращивания в окружающей среде синтезирующих их трансгенных растений даже приблизительно оценить невозможно.

Список литературы

1. Saxena D., Stotzky G. Release of Larvicidal Cry Proteins in Root Exudates of Transgenic Bt Plants. ISB News Report. 2005. February. P.1-3.

2. Zwahlen C., Hilbeck A., Gugerli P. et al. // Mol. Ecology. 2003. V.12. №3. P.765-775.

3. Saxena D., Flores S., Stotzky G. // Soil Biol. and Biochemistry. 2002. V.34. P.133-137.

4. Sims S.R., Holden L.R. // Environmental Entomology. 1996. V.25. P.659-664.

5. Wandeler H., Bahylova J., Nentwig W. // Basic and Applied Ecology. 2002. V.3. №4. P.357-365.

6. Saxena D., Stotzky G. // Amer. J. of Botany. 2001, V.88. №9. P.1704-1706.

7. Poerschmann J., Gathmann A., Augustin J. et al. // J. Environ. Qual. 2005. V.34. №5. P.1508-1518.

8. Flores S., Saxena D., Stotzky G. // Soil Biol. and Biochem. 2005. V.37. №6. P.1073-1082.

9. Smirnoff W.A., Heimpel A.M. // J. of Insect Pathology. 1961. V.3. №403-408.

10. Addison J.A., Holmes S.B. // Canad. J. of Forest Res. 1996. V.26. P.1594-1601.

11. Ahl Goy P., Warren G., White J. et al. Interaction of an insect tolerant maize with organisms in the ecosystem // Proceedings of the Key Biosafety Aspects of Genetically Modified Organisms. 10-11 April 1995. V.309. P.50-53. Mitteilungen aus der Biologischen Bundesanstalt fьr Land- und Forstwirtschaft, Berlin-Dahlem, Blackwell, Berlin, 1995.

12. Saxena D., Stotzky G. // Soil Biol. and Biochem. 2001b. V.33. P.1225-1230.

13. Zwahlen C., Hilbeck A., Howald R. et al. // Mol. Ecology. 2003b. V.12. №4. P.1077-1086.

Для подготовки данной работы были использованы материалы с сайта http://vivovoco.rsl.ru

Введение

1. Состояние изучаемого вопроса 11

2. Условия почвообразования на территории южной части Западной Сибири 38

2.1. Почвообразующие и подстилающие породы 38

2.2. Подзона подтайги 41

2.3. Подзона северной лесостепи 48

2.4. Растительность как фактор почвообразования 56

2.5. Методика исследований и схемы опытов 61

3. Населениие микроартропод агроландшафтов подтайги и северной лесостепи 70

3.1.Видовой состав панцирных клещей естественных биоценозов агроландшафтов 70

3.2.Население микроартропод агроценозов подзоны северной лесостепи 87

3.3. Сезонная динамика численности микроартропод агроценозов подзоны северной лесостепи 95

3.4. Структура населения микроартропод агроценозов подзоны подтайги 113

4. Биология доминирующих видов панцирных клещей агроценозов подтайги и северной лесостепи 132

4.1. Биология панцирного клеща Oppiella nova (Oudemans) 133

4.2. Биология панцирного клеща Tectocepheus velatus Mich 140

4.3. Биология панцирного клеща Scheloribates laevigatus (C.L.Koch.).. 148

4.4. Особенности питания Oppiella nova (Oudemans), Tectocepheus velatus Mich, и Scheloribates laevigatus (C.L.Koch.) 155

5. Биологические показатели в обеспечении формирования плодородия почвы 174

5.1. Влияние структуры населения и динамики численности микроартропод на разложение органических удобрений 182

5.2. Производство биогумуса и влияние его на структуру населения микроартропод 257

6. Влияние основных элементов системы земледелия на почвенных микроартропод и улучшение агрофизических показателей плодородия почв 294

Выводы 354

Литература 361

Приложение 407

Введение к работе

В эколого-экономической системе сельского хозяйства важнейшим компонентом является земля. Её качество, возможность повышения ее продуктивности и воспроизводство естественного плодородия прямо или косвенно влияют на развитие всей отрасли в целом.

Почвы представляют особую сложную биогенную оболочку земного шара, покрывающую сушу материков, это саморегулирующаяся система, включающая минеральные вещества, органику и многочисленных живых обитателей от микроорганизмов до червей и насекомых.

Истощение почв и насыщение их техногенными и антропогенными загрязнителями приводит к тому, что плодородный почвенный слой теряет один за другим те компоненты, которые и делают его уникальной системой, обеспечивающей сложные процессы минерализации и деминерализации веществ, преобразования энергии, самоочищения и самовоспроизведения. Дегумификация отчетливо проявилась в районах, где имеют место нарушения севооборотов, невыполнение технологий возделывания культур, необоснованная техногенная нагрузка на почву и несоблюдение закона возврата элементов питания в почву (Абрамов, 1995, 2003; Кирюшин, 2000). В земледелии сложился устойчивый отрицательный баланс питательных веществ, что стало одной из ведущих причин резкого снижения продуктивности пашни. Для решения этой проблемы необходима эффективная система организационных и агрономических мер, в том числе мер, позволяющих оптимизировать питание растений за счет повышения плодородия почв.

Установлено, что для поддержания оптимального уровня плодородия почв в России необходимо ежегодно вносить на поля не менее \6 млн. т д. в. минеральных и до 1 млрд. т органических удобрений (Милащенко, 1999).

Естественно-агрономическое обоснование воспроизводства плодородия почв базируется на экспериментально установленных и теоретически полностью объясненных положениях первичности и незаменимости плодородия в создании урожая, его материальности, энергетическом и экологическом значении. Концентрированным выражением сущности и значения плодородия почвы в земледелии является концепция единства растения и почвы, а также закон возврата - частное проявление всеобщего закона сохранения вещества и энергии.

Теоретической основой диагностики плодородия почв и разработки систем управления им является представление о плодородии как о сложной кибернетической системе, характеризующейся следующими признаками: многомерностью, большим числом взаимосвязанных параметров ключающих как количественные, так и качественные характеристики, различной природой параметров (физической, физико-химической, биологической и т.д.), их изменчивостью во времени и в пространстве, обусловленной как саморазвитием, так и управляющим воздействием геосистем, частью которых они являются (Апарин, 1979,1997).

Важным элементом в системе земледелия Западной Сибири является обработка почвы. Общепринятой системой основной обработки почвы для северной лесостепи и подтайги - отвальная, которая способствует минерализации органического вещества и без дополнительных мер восстановления плодородия почв не обеспечивает воспроизводство гумуса, особенно в последнее время, когда применение удобрений практически прекратилось. Контроль за состоянием плодородия почвы ухудшился.

Задача повышения и поддержания почвенного плодородия является одной из самых насущных задач практической деятельности человека и одной из самых сложных проблем, стоящих перед наукой.

Современные представления о почве основываются на положениях В. В. Докучаева и П.А. Костычева об исключительной роли живых организмов в образовании и жизни почвы.

Плодородие большинства почв зависит преимущественно от динамики живого и мертвого органического вещества, играющего решающую роль в процессах почвообразования, в создании оптимальных физико-химических особенностей почвы, снабжении растений элементами минерального питания и биологически активными веществами. Масштабы абиотических процессов в почве несоизмеримо малы по сравнению с процессами, определяемыми жизнедеятельностью высших растений, микроорганизмов и животных (Кононова, 1963; Тюрин, Кононова, 1963).

До недавнего времени в круговоротах веществ в биогеоценозах суши учитывали участие автотрофных и гетеротрофных организмов, куда включали преимущественно микроорганизмы, минерализующие растительные остатки и пополняющие запасы элементов минерального питания в почве. Роль животных рассматривали как консументов - потребителей органического вещества, создаваемого растениями. Исследованиями МС.Гилярова показано, что деление гетеротрофных организмов на консументов и редуцентов весьма условно, а деятельность беспозвоночных гораздо более значительна, чем считали ранее (Курчева, 1965, 1971).

Почвенные сапрофаги ускоряют микробиологический распад, размельчая растительные остатки и увеличивая их суммарную поверхность, доступную воздействию микрофлоры, расселению которой они способствуют. Сапрофаги перемешивают органическую часть почвы с минеральной, пропуская эту смесь через свои кишечники и участвуют таким образом в создании зернистой структуры почвы. При активном передвижении беспозвоночных улучшаются дренирование и аэрация глубоких горизонтов почвы, интенсифицируются в них микробиологические процессы. Такая деятельность почвенных беспозвоночных свидетельствует о том, что это один из мощных факторов круговорота веществ и почвообразовательных процессов (Гиляров,1971,Гиляров, Стриганова, 1978, Курчева, 1971).

В почве обитает огромное число беспозвоночных животных: простейшие, коловратки, тихоходки, нематоды, энхитреиды, дождевые черви, моллюски, мокрицы, многоножки, клещи и насекомые. Они составляют 25 -30% от общей биомассы организмов, населяющих почву; остальные 70 - 75% приходятся на долю бактерий, актиномицетов и грибов (Dunger, 1964). Живая масса почвенных беспозвоночных достигает 3,5 т/га (Edwards, 1966).

Большинство микроартропод селятся в основном в верхнем слое почвы глубиной до 30 см независимо от особенностей её хозяйственного использования.

Неосмотрительное антропогенное вмешательство может нарушить равновесие в агробиоценозе и привести к тяжелым последствиям, в частности к падению плодородия почвы. В связи с напряженной антропогенной нагрузкой особое значение приобретает оценка влияния окультуривания почвы на педофауну. Знание различных аспектов биологии почвенных микроартропод является необходимым при подготовке научных основ прогнозирования процессов, происходящих в агробиоценозах, с целью их оптимизации и охраны почв.

Цель исследований:

Изучение комплексов микроартропод агроландшафтов юга Западной Сибири и изыскание путей их формирования с целью повышения плодородия почвы и оптимизации сельскохозяйственной практики.

Задачи исследований:

Провести сравнительный эколого-фаунистический анализ видового состава панцирных клещей естественных биогеоценозов агроландшафтов Западной Сибири;

Изучить видовое разнообразие панцирных клещей и сезонную динамику численности микроартропод агробиоценозов на черноземных и серых лесных почвах агроландшафтов Западной Сибири;

Изучить биологию доминирующих видов панцирных клещей и биоценотические отношения между клещами и микрофлорой агробиоценозов;

Выявить закономерности формирования фаунистических комплексов микроартропод в агробиоценозах под влиянием агротехнологических мероприятий на чернозёме выщелоченном и серых лесных почвах;

Изучить специфику формирования структуры фаунистических комплексов микроартропод под влиянием агрофизических свойств почвы;

Выявить основные закономерности влияния структуры населения и динамики численности микроартропод на разложение органических удобрений и формирование плодородия почвы.

Научная новизна.

Впервые дана комплексная характеристика и сравнительный анализ населения панцирных клещей естественных и аграрных экосистем агроландшафтов Западной Сибири, а также выявлены особенности влияния хозяйственной деятельности человека на структуру фаунистических комплексов микроартропод.

Детально исследована динамика численности видового состава орибатид в колках и севооборотах на черноземах выщелоченных и серых лесных почвах Западной Сибири. Установлена роль колков и предшественников севооборота в формировании видового разнообразия агробиоценозов.

Изучена биология развития доминирующих видов орибатид агробиоценозов, влияние на них спектра температур, определены нижние пороги развития и суммы эффективных температур для определения числа генераций в течение вегетационного периода. Определены основные спектры питания доминирующих видов О. nova, Т. velatus, Sch. laevigatas.

Выявлено, что в условиях интенсивного сельскохозяйственного производства положительное влияние на динамику микроартропод оказывает дифференцированная, безотвальная и поверхностная обработки почвы. Установлены закономерности влияния плотности почвы и запасы продуктивной влаги на численность микроартропод.

Установлено активное участие микроартропод в процессе разложения растительных остатков сельскохозяйственных культур и определено влияние органических удобрений на формирование и структуру фаунистических комплексов, которые распределяются в зависимости от стадии разложения органических веществ. Динамические процессы в сообществе микроартропод подтверждаются теоретическим обоснованием использования в качестве органических удобрений комплексного применения соломы и сидератов в севообороте.

Теоретическая и практическая значимость. Результаты исследований служат вкладом в понимание путей и специфики формирования почвенной биоты агроландшафтов на юге Западной Сибири, теоретической основой для обоснования и разработки качественных и количественных показателей использования органических удобрений, систем обработки почвы, севооборотов.

Новые данные, полученные в результате исследований, вошли в курсы лекций по зоологии беспозвоночных, акарологии, сельскохозяйственной энтомологии, почвенной зоологии и экологии почв, читаемых в Тюменской государственной сельскохозяйственной академии и на биологическом факультете Тюменского госуниверситета.

Основное положение, выносимое на защиту.

Количественные и качественные параметры почвенной биоты являются отражением формирования почвенного плодородия в агроландшафтах юга Западной Сибири.

Апробация работы. Материалы диссертационной работы обсуждались и докладывались на Всесоюзных и Всероссийских совещаниях по почвенной зоологии (1987 - 2002), на съездах русского энтомологического общества (1998, 2002), на научных конференциях Тюменской сельхозакадемии (1997, 1999, 2000, 2001, 2002), Курганской сельхозакадемии (1994) и на Всероссийской научно-практической конференции (Курган, 1998), (Тюмень, 1999), на научно-технической конференции (Челябинск, 2002), на Региональной научно-практической конференции (Томск, 2003), на Международной научно-практической конференции по органическим удобрениям (Владимир, 2003), на Международном симпозиуме «Экология и биоиндикация панцирных клещей» (Германия, 1995).

Структура и объем работы. Диссертация изложена на 424 страницах машинописного текста и состоит из введения, 6 глав, выводов, списка литературы и приложения. Экспериментальный материал приведен в 86 таблицах и 141 рисунке. Библиографический список состоит из 529 наименований, в том числе 96 иностранных.

Пользуясь случаем выразить свою искреннюю признательность коллективу кафедры почвоведения и агрохимии, где выполнялась данная работа. Выражаю сердечную благодарность за консультации доктору с-х. наук, профессору ТюмГСХА Н.В.Абрамову и доктору с-х. наук, профессору ТюмГСХА В.А.Федоткину. В трудоемких полевых работах автору помогали студенты Тюменской государственной сельскохозяйственной академии и Тюменского государственного университета, которые выполняли курсовые и дипломные работы. Глубокая благодарность моему первому учителю канд. биол. наук, доц. ТГУ [Л.Д.Голосовой за постоянную поддержку и консультации. Также автор благодарен и признателен доктору биол. наук, профессору ЛГУ В.Н.Белозерову, канд. биол. наук, доц. ЛГУ (Н.И.Горышину, канд. биол. наук, сне ИСиЭЖ РАН Л.Г.Гришиной, канд. биол. наук, сне ИПЭЭ РАН А.Я.Друку, канд. биол. наук, доц. ТюмГСХА С.И.Зарубину, доктору биол. наук, профессору ТюмГСХА уІ.Н.Каретинуі доктору биол. наук, профессору ТюмГСХА И.Д. Комисарову, доктору биол. наук, профессору МГУ, чл.-корр. ИПЭЭ РАН Д.А.Криволуцкому, канд. биол. наук, зав. лаб. БИНИИИ ЛГУ Л.И.Пшедецкой, канд. с.-х.. наук, доценту ТюмГСХА Е.П.Реневу, канд. биол. наук, доц. ТГУ А.В.Толстикову, доктору биол. наук, профессору ЛГУ [В.П.Тыщенко!, канд. биол. наук, доц. ГГПИ М.П.Чистякову, доктору биол. наук, профессору ГГПИ Е.С.Шалдыбиной за консультации по почвоведению,земледелию, фитоценологии, акарологии, микологии, за предоставленную возможность работать с обширной акарологической литературой и справочными коллекциями по орибатидам.

Условия почвообразования на территории южной части Западной Сибири

Современный литологический состав рыхлых поверхностных пород и развитие гидрографической сети на территории Западной Сибири в значительной мере определены геологическим прошлым. Западно-Сибирская низменность примерно до мезозоя существовала как складчатая страна. В мезозое территория Западной Сибири подверглась тектонической депрессии и в результате деятельности дислокационных процессов образовалась Западно-Сибирская низменность. Наступившее с севера мезозойское море заполнило образовавшуюся депрессию и вместе со следовавшим за ним палеогеновым морем сильно пенепленизировало поверхность. В эоцене море имело максимальную глубину, к концу этого периода - началу олигоцена стало мелеть. В неогене море отделилось от Северного океана и образовало замкнутый бассейн, который затем распался на ряд крупных озер, исчезнувших к концу этого времени. Таким образом, Западно-Сибирская плита имеет палеозойское основание покрытое чехлом мезозойских и кайнозойских отложений (Геология СССР, 1969).

Древние морские отложения представлены темно-серыми, серыми и светло-коричневыми аргелитами, опоковыми глинами, опоками и песчаниками. Они отлагались в эоцене, когда море имело максимальную глубину.

Эоценовое море и сменившие его в палеогене озерные бассейны заполнили западносибирскую депрессию мощным слоем рыхлых осадочных отложений, которые сохранились на поверхности до настоящего времени (Геология СССР, 1969) и оказали большое влияние на формирование почвенного покрова. Они представлены преимущественно сизовато-серыми глинами монтмориллонитовой группы, так как содержат более 2% щелочей, 3% щелочноземельных металлов и 7% железа.

Осадки неогеновой системы представлены зеленовато-серыми, грязно-зелеными или плотными не слоистыми голубовато-зелеными глинами аральской свиты (нижний-средний миоцен), которые содержат желваки, друзы, кристаллы, реже пластины гипса, и глинами жиландийской свиты с известными включениями в виде журавчиков. Осадки этой свиты, по всей видимости, образовались в засоленных озерах и с ними нередко связаны солончаково-солонцовые почвы.

В конце плиоцена формировалась гидрографическая сеть с хорошо разработанными долинами. Палеогеновые и неогеновые отложения подвергались интенсивному размыванию, в процессе которого формировалась четвертичная система.

Формирование современных форм рельефа и почвообразующих пород связано с перемещением базиса эрозии в период оледенений, с разрывом древнеаллювиальных отложений и активными делювиальными процессами во влажный послеледниковый период. Согласно геологическим исследованиям в третичное время на территории Западно-Сибирской низменности был субтропический климат, который к концу плиоцена сменился более суровым, а в начале четвертичного времени ледниковым периодом. К концу ледникового периода северная часть Западно-Сибирской низменности опускалась. В это время определилось направление рек Западной Сибири. После таяния ледника воды устремились в понижения, благодаря чему произошло размывание более высоких частей рельефа, образование грив и формирование современной гидрографической сети. Послеледниковое время характеризуется жарким и сухим климатом, при котором, как считают геологи, возможно образование лёссов. И, наконец, климат стал постепенно изменятся в сторону того, какой мы имеем в настоящее время (Архипов, Вдовин и др., 1970).

Окончательное формирование рельефа и поверхностных отложений произошло в четвертичную эпоху, которая характеризуется пятью ледниковыми периодами и четырьмя послеледниковыми.

Наиболее существенное влияние на формирование рельефа и поверхностных отложений юга области сыграло самаровское оледенение в среднечетвертичную эпоху. Это был период максимального оледенения, когда ледник продвинулся примерно до широты Сургута. Перед ледником сформировался огромный водный бассейн типа мелкоморья. На юге области воды поднимались до 80 - 100 м над ур.м., сбрасывались они по Тургайской впадине в Каспийское море. На территории покрытой приледниковым озером, шло осадконакопление (озерных, озерно-аллювиальных). На приподнятых местах юга области располагались водораздельные равнины, сложенные лёссовидными породами субазрального генезиса (Архипов, Вдовин и др., 1970).

В последующий период наступление ледников было менее значительным, как и трансгрессия моря. На равнинах юга области образовались террасы, окончательно формировались покровные отложения, которые и являются почвообразующими породами. Они представлены в основном четвертичными отложениями различных возрастов. Это аллювиальные, озерные и озерно-аллювиальными, а также субаэральные покровные отложения (Гаджиев, Овчинников, 1977). Четвертичные отложения низких террас озерно-аллювиального генезиса разных возрастов занимают зону южной тайги и частично подтайги. В лесостепной зоне они представлены современными аллювиальными отложениями различного гранулометрического и вещественного состава (Волкова, 1966, Архипов, 1971). Особого внимания заслуживают покровные отложения высоких террас подтайги и лесостепи, поскольку специфика почвенного покрова и почв области в значительной степени связана именно с этими породами. Эти отложения имеют озерное или озерно-аллювиальное происхождение, но занимают террасы с высотными отметками. В основном формирование пород до зарождения современного почвенного покрова проходило в аридных и субаридных условиях (Волков и др., 1969), что привело их к облёссовыванию. Вследствие этого появились карбонаты, легкорастворимые соли, увеличилось количество фракций пыли, особенно крупной.

Сезонная динамика численности микроартропод агроценозов подзоны северной лесостепи

В настоящее время установлено, что кривая динамики численности некоторых групп микроартропод за вегетационный период чаще всего имеет двувершинныи вид, с двумя пиками максимальной численности. Первый пик отмечается в начале вегетационного периода (май-июнь), второй - осенью (сентябрь-октябрь). Летом и зимой численность снижается. Такой тип сезонных изменений численности орибатид и коллембол обнаружен в естественных и сельскохозяйственных ценозах во многих областях европейской части России (Ситникова, 1961, Субботина, 1969, Чугунова, 1970, Чистяков, 1971 и др.), в Приморском крае (Голосова, 1970, 1975), о.Сахалин (Лящев, 1984, 1989) и других регионах. Большинство авторов связывает колебания численности микроартропод с изменениями экологических условий в течение года (Шалдыбина, 1957; Москачева, 1959; Гришина, 1968; Субботина, 1969, Чистяков, 1971, Голосова, 1975, и др.). В некоторых работах (Субботина, 1965, Гришина, 1970, Чугунова, 1970 и др.) сезонная динамика численности орибатид объясняется кроме того особенностями жизненных циклов орибатид. В.Б.Пивень (1972, 1973 г, 1973д) для агроценозов лесостепной зоны Новосибирского Приобъя установил, что сезонные колебания численности панцирных клещей на культурных землях имеют один ярко выраженный максимум в сентябре. Такой характер сезонной динамики он связывает с возделываемыми культурами, микростациальными условиями и изменением численности доминирующих видов.

В настоящей работе нами исследована динамика численности орибатид в зернопропашном севообороте на выщелоченных черноземах. При этом преследовалась основная цель наших исследований: выяснить общий характер динамики численности микроартропод в агроценозах и влияния обработок на характер изменения численности микроартропод в течение сезона под отдельными культурами.

Анализируя сезонную динамику микроартропод в зернопропашном севообороте (однолетние травы - пшеница - ячмень - кукуруза - пшеница -ячмень) на выщелоченном черноземе, было отмечено, что характер динамики численности различных групп микроартропод под культурами может очень сильно отличаться друг от друга. Следует заметить, что это в какой-то степени зависит от соотношения численности между группами, приема обработок почвы и сельскохозяйственной культуры.

Микроартроподы были представлены пятью группами: орибатидами с преимагинальными стадиями, акаридиевыми, тромбидиформными, мезостигматическими клещами и коллемболами.

Рассматривая сезонную динамику численности микроартропод под однолетними травами при отвальной обработке почвы, было отмечено, что численность их колеблется в течение сезона в пределах от 7900 до 14800 экз/м. Так, у взрослых орибатид мы наблюдаем ход динамики, который идет следующим образом. Весной (в мае) было отмечено 2453 экз/м2. После предпосевных обработок численность орибатид в июне начинает уменьшаться (2133 экз/м), а к июлю она падает до 1960 экз/м. В конце июля и августе после уборочных работ и зяблевой вспашки численность продолжает убывать (1473 экз/м), но в августе и сентябре идет постепенная стабилизация (1427 экз/м). Динамика численности преимагинальных стадий почти не отличается от динамики имаго орибатид, единственное, что в июне их численность немного повышается (2707 экз/м), а затем идет постепенно на убыль. Следует отметить, что численность преимагинальных стадий постоянно превышает имаго орибатид на 17 - 46% в течение сезона (приложение 2).

При рассмотрении других групп микроартропод было установлено, что акароидные, тромбидиформные, мезостигматические клещи и коллемболы отличаются сезонной динамикой численности от панцирных клещей тем, что у акароидных клещей численность в мае была в 3,4 раза ниже (720 экз/м), чем у орибатид (2453), а к середине июня увеличилась в 3,8 раза (2733) и к середине июля она еще увеличилась в 2 раза (5680). В августе и сентябре ход численности их меняется, кривая идет на понижение и к сентябрю падает в 3,6 раза. У тромбидиформных и мезостигматических клещей интенсивность подъема роста численности ниже, чем у акароидных. Так, численность тромбидиформных клещей с мая по середину июня увеличилась на 48%, с июня по середину июля она увеличивается на 82%, а в августе и сентябре происходят только не большие колебания численности в пределах 16 - 28%. Пик численности мезостигматических клещей отмечен к концу июля (1013 экз/м), но затем она вновь падает и в сентябре составляет 573 экз/м2. Ход численности коллембол в начале сезона колеблется равномерно и только во второй половине сезона начинает падать (640 экз/м) (рис. З.З.1., приложение 2).

Структура населения микроартропод агроценозов подзоны подтайги

Животный мир пахотных почв сильно трансформирован деятельностью человека. Мелкие почвенные членистоногие (микроартроподы) - одна из немногих групп животных - почвообразователен, сохраняющих в агроценозах достаточно высокую численность и видовое разнообразие. Их функциональная роль в почве, по исследованиям последних лет, заключается нестолько в непосредственной переработке органических веществ, сколько в регуляции микробиологической активности в связи с положением микроартропод в деструкционных трофических цепях (Стриганова, 1980). В связи с этим закономерности и особенности распределения различных групп мелких членистоногих в пахотной почве представляют интерес не только с зоологической точки зрения, но и для характеристики почвообразовательного процесса.

Материал собран на опытном поле стационара Тюменской государственной сельскохозяйственной академии в Юргинском районе Тюменской области. Почва опытного поля средне и слабогумусная, серая лесная. Неоднородность почвенных свойств определяется в основном естественным варьированием. Исследовали верхний слой пахотного горизонта до 15 см в полях зернового с занятым паром севооборота под культурами: однолетние травы, пшеница и овес. Рассматривали общие особенности варьирования плотности популяций в пахотном слое.

В результате проведенных исследований на полях зернового с занятым паром севооборота на серых лесных почвах нами было выявлено 32 вида панцирных клещей (табл.3.4.1.), из них под однолетними травами - 28 видов, под пшеницей - 24 вида и под овсом - 18 видов.

При изучении агроценозов с различными культурами нами было отмечено, что плотность панцирных клещей может колебаться в течение сезона в очень больших пределах. Так, например, под однолетними травами -от 1440 до 2880 экз/м, под пшеницей - от 1380 до 2530 экз/м, под овсом - от 1240 до 2220 экз/м2. Следует отметить, что численность орибатид здесь примерно в 2,1 - 4,3 раза ниже, чем в смешанных лесах агроландшафтов Западной Сибири. Фауна панцирных клещей представлена широко распространенными в Голарктике видами, среди которых большого разнообразия достигают виды верхнепочвенные, глубокопочвенные и неспециализированные.

По приуроченности к определенным культурам обнаруженные виды панцирных клещей отнесены к нескольким группам (табл.3.4.1.) 1. Виды, населяющие все обследованные поля (11 видов). Это следующие представители фауны агроценозов зернового севооборота: Epilohmannia cilindrica, Banksinoma lanciolata, Tectocepheus velatus, Oppiella nova, Microppia minus, Tectoribates ornatus, Libstadia similes, Punctoribates punctum, Peloptulus phaenotus, Eulohmannia ribagai, Birsteinius perlongus. 2. Виды, встреченные на нескольких полях, предпочитающие некоторые культуры. К ним относятся Oppia cylindrica, Conchogneta tragardhi, Oribatula tibialis, Scheloribates latipes, Scheloribates laevigatus, Ceratozetes sellnicki, Punctoribates hexagonus, Oribatella angulosa, Scutovertes pannonicus, Tegoribates latirostris и Artopacarus striculus. 3. Виды, обнаруженные на нескольких полях с примерно одинаковым распределением в них (Eulohmannia ribagai, Epilohmannia cilindrica, Birsteinius perlongus, Punctoribates hexagonus, Scheloribates laevigatus, Oribatula tibialis, Conchogneta tragardhi). 4. Виды, встреченные только на одном поле (Brachychthonius berlesei, Quadroppia quadricarinata, Peloribates pilosus, Trichoribates incisellus, Rhysotritia duplicate. Исследования показали, что в зерновом с занятым паром севообороте на всех трех полях под однолетними травами, пшеницей и овсом были отмечены по одному эудоминанту, но следует отметить, что Tectocepheus velatus является таковым только под однолетними травами и овсом, a Oppiella nova - под пшеницей. По два доминирующих вида отмечено под однолетними травами (Oppiella nova и Microppia minus), под пшеницей ectocepheus velatus и Punctoribates punctum, а под овсом отмечен только один вид (Microppia minus). Субдоминирующие виды на этих полях не одни и те же. Так, под однолетними травами доминируют Palaeacarus kamenskii, Banksinoma lanceolata, Liebstadia similis и Peloptulus phaenotus, под пшеницей субдоминируют Microppia minus, Oppia cylindrica, Tectoribates ornatus и Scutovertes pannonicus, а под овсом субдоминирует только один вид - Oppiella nova.

Производство биогумуса и влияние его на структуру населения микроартропод

Для решения экологических проблем, связанных с биологической утилизацией локально накопленных органических отходов, а также для восстановления и повышения плодородия сельскохозяйственных угодий, требуется тщательное соблюдение экологических законов, знание функционирования агроценозов и рационального их использования в интересах человека (Минеев и др., 1993)

В условиях интенсификации земледелия одной из важнейших задач является повышение плодородия пахотных почв путем увеличения содержания в них гумуса. Остро стоит вопрос о возможных источниках обогащения почвы свежим органическим веществом. Промышленность и сельское хозяйство поставляют в окружающую среду огромное количество органических отходов, поэтому одной из острейших проблем современной науки является разработка способов их утилизации и переработки. Уже существует много технологий утилизации органических отходов, большинство из которых самими не являются безотходными. Серьезной альтернативой им может быть биоконверсия с помощью вермикультуры -безотходная технология, дающая возможность получать экологически чистое удобрение - биогумус (вермикомпост) и биологическую массу вермикультуры (Покровская, 1990а,б; Мельник, 1991а, 19916; Попов, 1993; Ганжара, Борисов, Флоринский, 1995;Попов, 1995).

Оптимизируя функционирование агроценозов, необходимо восполнять утраченные биоценотические звенья. Один из путей решения -это искусственное восстановление отдельных звеньев агроэкосистемы без полного воссоздания видового разнообразия почвенной биоты. Это возможно при вермикультивировании, когда недостающее звено, гумифицированный органический материал, образуется в искусственных условиях.

Биогумус способствует повышению урожайности сельскохозяйственных культур на 20-30%, улучшает качество сельскохозяйственной продукции. Он используется для реанимации и рекультивации почв, подвергшихся негативным антропогенным воздействиям, для снижения содержания в них тяжелых металлов и радионуклидов (Алексеев, 1987).

Выращенные на биогумусе плоды и овощи, свободные от нитратов и тяжелых металлов, обладают прекрасными вкусовыми качествами, а цветы -исключительно тонким и нежным ароматом (Викторов, 1991; Мельник, 1991а).

Переработка органических отходов происходит с помощью искусственно воссозданного природного комплекса гетеротрофных организмов, включающих дождевых червей (Eisenia foetida) и сопутствующих им представителей почвенной микробиоты и сообществ микроорганизмов. Вермикультивирование позволяет решать проблему восстановления и поддержания плодородия почв.

Почва - это живой организм, комплекс микро- и макрофауны в сочетании с элементами неживого минерального и органического вещества, находящегося в тесном взаимообменном процессе. В числе многих гумификаторов главная роль отводится дождевым червям, как массовым животным, мощным землероям и структурообразователям почвы (Картамышев, 1996).

Дождевые черви, поглощая вместе с почвой значительное количество растительного детрита, микробов, грибов, водорослей и т.д., уничтожают и переваривают их, выделяя одновременно с копролитами большое количество собственной кишечной микрофлоры, ферментов, витаминов, которые обладают антибиотическими свойствами и препятствуют развитию патогенной флоры, обеззараживая почву. В процессе переваривания растительных веществ в кишечнике червей формируются гумусовые вещества. Они отличаются по химическому составу от гумуса, образующегося в почве при участии только микрофлоры тем, что в кишечнике червей развиваются процессы полимеризации низкомолекулярных продуктов распада органических веществ и формируются молекулы гуминовых кислот, имеющих нейтральную реакцию. Они образуют комплексные соединения с минеральными компонентами почвы и долго сохраняются в почве в виде стабильных агрегатов. Деятельность червей замедляет вымывание из почвы подвижных соединений и предотвращает возможность водной и ветровой эрозии ее (Карпец, Мельник, 1991; Перель, 1985). В капролитах червей естественных популяций содержание гумуса 11-19%. Черви обладают способностью образования, мелиорирования и структурообразования почвы. Эта их деятельность не дублируется никакими другими животными и не может быть компенсирована никакими мелиоративными приемами. Установлено, что за летний период популяция из 100 червей на один квадратный метр прокладывает в почве на этой площади несколько километров ходов и 3 метра капролитов. Но в почве капролитов остается еще больше (Вахрушев, 1991; Мельник, 19916; Попов, 1993). Выявлено, что каждый червь пропускает через свой пищеварительный канал за сутки количество почвы, равное весу своего тела. По подсчетам некоторых авторов, количество почвы, пропускаемой через пищеварительный канал дождевых червей на 1 га за год (имеется в виду теплый период), составляет 50 т. (Ганжара, Борисов, Флоринский, 1995; Перель, 1985).

Живые организмы - обязательный компонент почвы. Количество их в хорошо окультуренной почве может достигать не­скольких миллиардов в 1 г почвы, а общая масса - до 10 т/га.

Основная их часть - микроорганизмы. Доминирующее значение принадлежит растительным микроорганизмам (бактерии, грибы, водоросли, актиномицеты). Животные организмы пред­ставлены простейшими (жгутиковые, корненожки, инфузории), а также червями. Довольно широко распространены в почве моллюски и членистоногие (паукообразные, насекомые).

Почвенные организмы разрушают отмершие остатки растений и животных, поступающие в почву. Одна часть органического вещества минерализуется полностью, а продукты минерализации усваиваются растениями, другая же переходит в форму гумусо­вых веществ и живых тел почвенных организмов.

Некоторые микроорганизмы (клубеньковые и свободноживущие азотфиксирующие бактерии) усваивают азот атмосферы и обогащают им почву.

Почвенные организмы (особенно фауна) способствуют пере­мещению веществ по профилю почвы, тщательному перемеши­ванию органической и минеральной части почвы.

Важнейшая функция почвенных организмов - создание проч­ной комковатой структуры почвы пахотного слоя. Последнее в решающей степени определяет водно-воздушный режим почвы, создает условия высокого плодородия почвы.

Наконец, почвенные организмы выделяют в процессе жизне­деятельности различные физиологически активные соединения, способствуют переводу одних элементов в подвижную форму и, наоборот, закреплению других в недоступную для растений форму.

В обрабатываемой почве функции почвенных организмов сводятся к поддержанию оптимального питательного режима (частичное закрепление минеральных удобрений с последующим освобождением по мере роста и развития растений), оструктуриванию почвы, устранению неблагоприятных экологических ус­ловий в почве.

В интенсивном земледелии экологические условия могут иног­да в решающей степени определять эффективное плодородие почвы. В ней существуют тесные многообразные связи между всеми почвенными организмами. Причем вся эта система нахо­дится в состоянии непрерывно изменяющегося равновесия. Одни группы микроорганизмов предъявляют простые требования к пи­ще, другие - сложные. Между одними группами существуют симбиотические (взаимно полезные) связи, между другими - антибиотические. Микроорганизмы в последнем случае выделяют в почву вещества, подавляющие развитие других микроорганизмов.

Практическое значение имеет способность некоторых микро­организмов оказывать губительное действие на представителей фитопатогенной микрофлоры. Усилить активность желательных микроорганизмов можно путем внесения в почву органиче­ского вещества. В этом случае отмечается вспышка в разви­тии почвенных сапрофитов, которые, в свою очередь, стимулиру­ют развитие микроорганизмов, угнетающих фитопатогенные виды. Для нормального функционирования почвенных организ­мов необходимы прежде всего энергия и питательные вещества. Для подавляющего большинства микроорганизмов такой источник энергии - органическое вещество почвы. Поэтому активность почвенной микрофлоры главным образом зависит от поступления или наличия в почве органического вещества.

Для оценки деятельности почвенной биоты используют пока­затель «биологическая активность почвы». Под биологической активностью понимают, в одних случаях общую биогенность почвы, определяемую, как правило, подсчетом общего количества поч­венных микроорганизмов. Если иметь в виду несовершенство методик, применяемых в этом случае, и малую кратность опреде­лений во времени, то результаты анализа дают примерную картину биологической активности почвы.

Другая точка зрения относительно методов определения био­логической активности почвы заключается в учете результатов деятельности почвенных организмов. Особенно важен такой под­ход в агрономии. Однако привести к общему знаменателю исклю­чительно многообразную деятельность почвенной флоры и фауны методически непросто.

Наиболее универсальный показатель деятельности почвенных организмов - продуцирование ими углекислого газа. Поэтому учет выделяемого почвой углекислого газа - первостепенный из других биохимических способов определения биологической активности почвы.